
Virtual DDBMS Network Protocol
Draft v0.8.0.0

Copyright (C) 2008-2009 Aloysius Indrayanto & Chan Huah Yong
Grid Computing Lab - University Sains Malaysia

This document is licensed under the GNU Free Documentation License (GNU FDL)
either version 1.3 of the license, or (at your option) any later version as

published by the Free Software Foundation.

Note: In this draft (major version is zero), compatibility between protocol
 versions are not guaranteed.

General Protocol Format

<magic_numbers> <data_size> <protocol_version> <connection_id>
<serial_number> <compression> <res_1> <res_2> <res_3> <res_a> <res_b>
<message_body>

magic_numbers : four characters, which can be :
 VDCM : message from client to server.
 VDSM : message from server to client.

data_size : a 32-bit unsigned integer containing the total message size
 (the length of the message_body + 32).

protocol_version : a 32-bit unsigned integer containing the protocol version.
 MSB LSB
 8-bit 8-bit 8-bit 8-bit
 major minor revision fix

connection_id : a 32-bit unsigned integer containing the connection ID
 (ignored for some messages).

serial_number : a 32-bit unsigned integer containing the message serial
 number (a sequence number generated by the client).

compression : an 8-bit unsigned integer defining the compression type of
 the message body.

res_1, res_2, : an 8-bit unsigned integer, reserved for future expansion.
res_3

res_a, res_b : a 32-bit unsigned integer, reserved for future expansion.

message_body : variable length bytes containing the real message (can be
 compressed and/or symmetrically encrypted).

Note: - Change in major version indicates major revision on the protocol which
 is not backward compatible.
 - Change in minor version indicates minor addition to the protocol
 string(s) which is backward compatible. In case the newly added protocol
 string(s) are not used, the system would still function normally.
 - Change in revision version indicates minor extension in the current
 protocol string(s) which is backward compatible. For example: when new
 compression/encryption mode is added.
 - Change in fix version indicates bug-fixes in the server/client software.
 This number can be safely ignore in most of the case. Users, however,
 may use this number if need to track special bugs or changes. The server
 and client can set different number for this version number. Generally,
 server/client with higher fix version would has less bug and more
 compliance to the protocol standard.

Upon opening TCP connection to the server, the client must send a valid Request
for Connection followed by a valid Request for Login in a reasonable amount of
time (or the server will disconnect automatically). The same TCP connection
(socket) must always be used for all the time (from the start of the connection
until disconnection).

Message Body Protocol Format

(C) : identifies client's message (request).
(S) : identifies server's message (response).

The numbers postfix, like (S1), (S2), etc. identify alternative message which
may be sent.

In secure connection, except explicitly stated, the message_body must be
encrypted with the server key.

All the strings, except explicitly stated, are non null-terminated strings.

All numbers must be represented in network byte order (Big Endian).

In secure connection, the message_body must be always encrypted (except
explicitly stated). However, compressed and non-compressed request/response may
come interleaved.

In case both compression and encryption are used, the message_body must be
encrypted first before compressed.

Encrypted and/or compressed message body will have/has additional header(s) as
shown by this example picture:

 n = a 32-bit unsigned integer containing the size of the original message
 body.

 m = a 32-bit unsigned integer containing the size of the encrypted message
 body plus the the size of n.

 x = a 32-bit unsigned integer containing the size of the compressed message
 body plus the the size of m.

 Hence, in the header, the data_size must be set with (x + 32).

original message body

encrypted message bodyn

 n bytes

 m bytes

compressed message bodym

 x bytes

Request for Server Version

 (C) : version

 Note: - The protocol_version when sending the request must be set
 with the highest protocol version supported/requested by the
 client.
 - The connection_id when sending the request is ignored.
 - If this request is sent prior any Request for Connection,
 the message_body must not be encrypted.
 - After successful Request for Connection, the message_body of
 this request can be encrypted or not encrypted.

 (S1) : error <message>

 message : variable length bytes containing the error message.

 Note: - The server will send error if there is error or the server
 does not support the protocol version requested by the
 client.
 - The server will close the connection after sending the
 response if there is no prior successful Request for
 Connection.

 (S2) : ok <highest_protocol_version> <message>

 highest_protocol_version : a 32-bit unsigned integer containing the
 highest protocol version supported by the
 server.
 message : variable length bytes containing
 informational message from the server.

Request for Connection

 (C) : connect <secure> [<pk_size> <pk_data>]

 secure : an 8-bit unsigned integer, if non zero means
 the client wants secure connection.
 pk_size : a 32-bit unsigned integer containing the size of the
 client's public key (currently the size of the key can be
 256, 512, 1024, or 2048 bits).
 pk_data : the client's RSA public key in 256/512/1024/2048 bits
 multi-precision unsigned integer (32/64/128/256 bytes).

 Note: - The connection_id when sending the request is ignored.
 - The message_body must not be encrypted.

 (S1) : error <message>

 message : variable length bytes containing the error message.

 Note: - Upon rejection, the server will close the connection.

 (S2) : ok <new_connection_id> [<server_key_len> <server_key>]

 new_connection_id : a 32-bit unsigned integer containing the ID
 of the newly established connection (must be
 used for subsequent requests with the same).
 server_key_len : a 32-bit unsigned integer containing the
 decrypted length of the server's key (currently
 the size of the key is always 128 bits).

 server_key : the server key encrypted with the client's public
 key (hence the length will become 32/64/128/256
 bytes).

 Note: - The server_key is to be used for symmetrical encryption
 (AES) of the message_body on subsequent requests.
 - Request for Connection must be followed by a successful
 Request for Login in a reasonable amount of time or the
 server will close the connection automatically (currently
 the limit is set to 90 seconds).

Request for Login

 (C) : login <user_len> <user_name> <password>

 user_len : an 8-bit unsigned integer containing the length of the
 user name.
 user_name : variable length bytes containing the user name.
 password : variable length bytes containing the user password.

 Note: - The user_name and password are sent in CRC-32 encoded form.

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok

 Note: - The server will translate the given user_name and password
 to the appropriate 4 base-64 characters ID needed by the
 DDBMS engine, complete with the ACL for the user.

Request for Compression

 (C) : compression <code>

 code : an 8-bit unsigned integer containing the requested compression
 mode to be enabled, supported values:

 0 : no compression
 1 : gzip

 Note: - For new connection, compression is disabled by default.
 - Even the client has requested to enable compression, may not
 all the sever messages will be compressed. The server will
 decide when to compress or not to compress the messages.

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok

Request for Disconnection

 (C) : disconnect

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok

Request for Ping (Keep-Alive)

 (C) : ping

 Note: - This request is necessary to keep the connection alive if
 the client will be idle for some time (currently the limit
 is set to 10 minutes).

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok

Request for SQL Evaluation

 (C) : eval_sql <sql_statement>

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok

Request for SQL Execution

 (C) : exec_sql <sql_statement>

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok

Request for SQL Preparation

 (C) : prep_sql <sql_statement>

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok

Request for Execution of the Prepared SQL

 (C) : prep_exec <total> [<id> <len> <value>
 [<id> <len> <value>]...]

 total : an 8-bit unsigned integer containing the number of
 parameters that will be set.
 id : an 8-bit unsigned integer containing ID of the parameter.
 len : a 32-bit unsigned integer containing length of the parameter.
 value : variable length bytes containing the value.

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok

Request for Results (Rows)

 (C) : fetch_row <max_num_of_row>

 max_num_of_row : an 8-bit unsigned integer containing the maximum
 number of rows which shall be returned.

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok <num_of_row> <num_of_col> [<col_len>... <col_data>...
 [<col_len>... <col_data>...]...]

 num_of_row : an 8-bit unsigned integer containing the number of
 rows returned.
 num_of_col : an 8-bit unsigned integer containing the number of
 columns in each row.
 col_len : 32-bit unsigned integers containing the length of the
 columns' data.
 col_data : variable length bytes containing the columns' data.

 Note: - A col_len of zero means that the corresponding column
 contains SQL NULL.

Request for Discarding Results (Rows)

 (C) : discard_row <num_of_row>

 num_of_row : a 32-bit unsigned integer containing the number of rows
 which shall be discarded.

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok

Request for Discarding All Results (Rows)

 (C) : discard_all_rows

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok

Request for Adding A Resource

 (C) : add_resource <type_len> <host_len> <user_len> <password_len>
 <type> <host> <port> <user> <password> <description>

 type_len : an 8-bit unsigned integer containing the length of the
 resource type string.
 host_len : an 8-bit unsigned integer containing the length of the
 host name string.
 user_len : an 8-bit unsigned integer containing the length of the
 user name string.
 password_len : an 8-bit unsigned integer containing the length of the
 user password string.
 type : variable length bytes containing the resource type.
 host : variable length bytes containing the host name.
 port : a 32-bit unsigned integer containing the port number.
 user : variable length bytes containing the user name.
 password : variable length bytes containing the password.
 description : variable length bytes containing the description.

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok <new_resource_id>

 new_resource_id : four base-64 characters of the newly added
 resource.

Request for Removing A Resource

 (C) : remove_resource <resource_id>

 resource_id : four base-64 characters containing the resource ID.

 (S1) : error <message>

 message : variable length bytes containing the error message.

 (S2) : ok

Request for Adding A Resource - Extended Version 1

 (C) : add_resource_ex <type_len> <host_len> <dbname_len>
 <user_len> <password_len>
 <type> <host> <port> <dbname>
 <user> <password> <description>

 dbname_len : an 8-bit unsigned integer containing the length of the
 database name string.
 dbname : variable length bytes containing the database name.

 Note:
● This protocol is available starting from protocol version 0.6.1.0.
● Please refer to the original add_resource protocol string for the

full field explanations.

Request for Adding A Resource - Extended Version 2

 (C) : add_resource_ex2 <type_len> <host_len> <dbname_len>
 <user_len> <password_len> <odbcopts_len>
 <type> <host> <port> <dbname>
 <user> <password> <odbcopts> <description>

 odbcopts_len : an 8-bit unsigned integer containing the length of the
 ODBC options
 odbcopts : variable length bytes containing the ODBC options.

 Note:
● This protocol is available starting from protocol version 0.6.2.0.
● Please refer to add_resource_ex protocol string for the full field

explanations.

